Skip to content

Karatun physics

Ita kalmar physics ta samo asali ne daga kalmar “physis” wanda a turance ake ce physics, meaning nature and natural characteristics. Masana sun yi defining physics a harshen Turanci kamar haka: “physics is a branch of science which deals with the study of matter and energy and the relationship between the matter and the energy at atomic and subatomic level.  Ko kuma za a iya cewa physics is the study of nature, misali physics ne ya iya yin bayanin dalilin da idon mu yake iya gani kuma ya yi bayanin dalilin da yasa idan guga na cikin rijiya sai muji ba nauyi amma idan aka fara fitar dashi daga rijiyar sai mu fara jin nauyi. Shi ne kuma ya yi bayanin da yasa ake yin tsawa da walkiya, kana ya yi bayani game da me yasa komai aka harba sama yakan dawo kasa, da ma sauransu.

A fannin physics kalmomin da dalibai ya kamata su lura da su sune matter and energy. A Turance, matter is anything that has mass (weight) and can occupy space. A harshen Hausa kuwa za mu iya cewa matter shine dukkan wani abu da yake da mass, wato nauyi, kuma zai iya tare guri. Misalai sune mutum, pensuri, takarda, iska, ruwa da sauransu.

Shi kuma enegy abu ne da ke iya bada dama ayi aiki, wato a Turanci energy is the ability to do work. kuma S.I unit dinsa ana kiran shi joule (j). Anan mun sake samun sabuwar kalma wato work.

Work a physics yana nufin ayi multiplying force da zai tura abu ko ya jawo abu da distance da abun zai tafi in the direction of the force.

Har ila yau, a wannan makala zamu duba wa ake kira “physicist”, wanda shine ya karanta physics kuma ya fahimi physics din. Amma idan ya karanta sai kuma bai gane ba, to bai zama physicist ba.

Amfanin karanta physics (importance of physics)

  1. Physics is constantly striving to make the sense of the universe. Wato shine ya yi theories kuma yana kara yin theories din domin a san wannan duniya da muke ciki.
  2. In physics we acquire knowledge and skill to understand how and why natural things happen the way they do and make a reliable prediction about their future occurrences. Ma’ana, duk abunda ya faru haka kawai ilimin physics na iya yin bayani gamsashshe game da faruwar hakan.
  3. Ilimin physics has enhanced communication and transportation which made the world a “global village”, dama sauransu

Ayyuka da mutum zai iya yi idan ya karanta physics (carriers in physics)

Bangaren likitanci:  mutum zai iya zuwa ya koyi human medicine and surgery, nursing and midwifery, pharmacy da dai sauran su

Bangaren ilimin engineering: akwai kamar su electrical, mechanical, civil engineering

Bangaren physical and life science: dalibi zai iya zuwa ya koyi kamar geophysics, biophysics, geology, astrophysics da makamantansu

Bayani akan fundamental quantities

Fundamental qualities na nufin wasu quantities ne wadanda ake amfani dasu don samun “derived quantities”. Ga misalansu kamar haka; length, time, mass, temperature, electric current, amount of substance da kuma luminous intensity.

Wanda kullum ake mu’amala dasu  guda uku ne gasu kamar haka length, time da kuma mass domin sune komin yaya mutum sai yayi amfani da su misali idan mutum ya tashi dole zai bar gurin kwanciyarsa, ka ga anan an samu rata “which is length”, mutum zai dauki rigansa ko wayarsa kodai wani abu, kaga nan kuma an samu “mass”. Idan kuma mutum ya fara yin wani abu ka ga ai zai iya gamawa dole, ya zama kenan akwai lokaci farawa da kuma na gamawa anan kuma an samu “time”.

Kowane physical quantity yana da S.I Unit da ake gwada shi da shi, misali;

S/NQuantitiesS. I UnitsSymbolsOther units
1LengthMeterMCm, dm, km, yard, foot inch etc.
2MassKilogramKgmg, µg , tones
3TimeSecondSMinute, hour, day, week, month, year, decade, century etc.
4TemperatureKelvinKᶱC, ᶱF
5Amount of substanceMoleMol
6  Luminous intensity  Candela  Cd  Wm^-2
7Electric currentAmpereAᶬA, µA da sauransu

Abubuwan da ake gwada length da su sune; tape, meter rule, micrometer screw gauge, vernier caliper dama foot.

Abubuwan da ake gwada time sune; stopwatch, wall clock, wristwatch, solar day etc.

Sannan abubuwan da ake gwada mass sune; chemical balance, dial balance, lever balance spiral spring etc.

Tambayoyi

Kafin mu ci gaba, ga wasu tambayoyi don mu auna fahimtarmu kamar haka:

1. Define physics

2. Mention the three most important fundamental quantity.

3. Which of the following is not part of the carrier in physics.

(a) Pharmacy (b) Engineering (c) Government (d) Nursing

4. Which of the following is the S.I unit of electric current

(a) second (b) ampere (c) meter (d) kelvin

Canja unit zuwa wani unit (conversion)

Tambaya na farko: How many metres are there in 2km?

Solution: Tunda 1000m yana bada 1km sai muce

1000m     =     1km

Xm            =    2km sai muyi abunda ake kira cross multiply daga nan zamu samu

Xm * 1km = 2km * 1000m, Xm = 2000m.

Tambaya na biyu: Convert 500dm to mtetres?  

Solution: Tunda 10dm = 1m

Ym    =   500dm

1m    =   10dm kamar yadda akayi a misalin farko zamu samu

10dm *Ym  =   1m* 500dm, ym = 500m/10 = 50m.

Tambaya na uku: Change 2000000cm to kilometre ? kamar yadda muka gani a misalai biyu na farko haka wannan maa za a yi shi.

Solution:  100000cm    =    1km                              daga nan zamu samu

                 2000000cm   =  Bkm

100000cm* Bkm     =   1km* 2000000cm yanzun Bkm   = 2000000km/100000  = 20km.  Sai kuma mu duba yadda za’ayi conversion na time.

Misali na farko: How many hours are there in seven (7) days?

Solution: Tunda 24hr    =     1day

Ahr     =     7days  anan sai muce number gefen hannun hagu ta sama yayi multiplying na number gefen hannun dama ta kasa, hagu ta kasa yayi multiplying dama ta sama ma’anar “cross multiply kenan” daga nan zamu samu

Ahr*1day = 24hr * 7days, Ahr  = 168hr

Karin tambayoyi:

A gwada wannan exercise sannan a rubuto amsan a shashin comment na kasa.

(1) how many minutes are there in two weeks?

(2) change 0.5km to: (A) dm (B) mm (C) m

Bayani akan derived quantity

Derived quantity su quantity ne da ake samun su sanadiyar hada fundamental quantities ta hanyar multiplying two or more or dividing two or more fundamental quantity. Misalansu sun hada da; area, volume, density etc.

S/NQuantitiesDefinitionSymbolsExpressionUnits
1AreaLength * BreadthL*Bm*mm^2
2VolumeLength*Breadth*HeightL*B*Hm*m*mm^3
3DensityMass/Volumem/VKg/(m*m*m)Kgm^-3
4Velocity/speedDisplacement (Distance)/Times/tm/sMs^-1
5AccelerationVelocity/Timev/t(m/s)/sMs^-2
6    ForceMass *Acceleration    M*a                  Kg*(m/s)/s              Kgms^-2 (N)  
7  MomentumMass * VelocityM*v kg*m/s Kgm/s)  
8  Pressure WorkForce /AreaF/A(Kg*(m/s)/s)/m^2Kgm^-1s^-2
Table na sama yana nuna mana misalan derived quantities a takaice

Conversion

Anan zamu nuna yadda ake canja Units din derived quantities

Example: Convert 2oomm^2 to m^2?

Solution: Tunda a baya mun san cewa

1000mm    =   1m sai muyi squaring both sides shine kamar haka

(1000mm)^2   =   (1m)^2  yan zun zai zamo

1000000mm^2    =   1m^2

200mm^2             =   Qm^2

Sai mu yi abinda ake kira “cross multiplication” saboda mu samu

Qm^2 * 1000000mm^2      =    1m^2 * 200mm^2, sai muce divide both sides by 1000000mm^2

Qm^2   =200m/1000000   = 2*10^-4m = 0.0002m

Example: change 18km/hr to m/s?

Solution: Sai muce tunda 1km = 1000m haka kuma 1hr = 60* 60Seconds yanzu sai muce

18km/hr   = (18*1000m)/(1*60*60) = 18000/3600 = 180/36 = 5m/s.

Exercise

Har ila, ana iya solving wadannan exercise din kuma a rubuto amsar su a sashen comment dake kasa. Mutum na iya amsa dukka ko kuwa wasu daga cikin gwargwadon yadda aka fahimta.

  1. Convert the following to m^2 (a) 300000mm^2 (b) 20cm^2 (c) 15dm^2 (d) 10km^2
  2. What is the equivalence of 50m^2 in (a) km^2 (b) cm^2 (c) mm^2?
  3. Change 10m/s to km/hr
  4. In a tabular form mention any four (4) derived quantities you know and derive their units
  5. Distinguish between fundamental unit and derived unit
  6. What is the full meaning of S.I Unit?
  7. List any two instruments for measuring length of an object?

A makala na gaba za mu yi bayani akan dimension, measurement of volume, mass and weight motion. Har ila yau kuna iya aiko da tambayoyinku a sashen comment.

You cannot copy content of this page

Discover more from Bakandamiya

Subscribe now to keep reading and get access to the full archive.

Continue reading