Skip to content

Titanium

    Aika

    Titanium wani sinadarin ƙarfe ne mai alamar Ti da lambar atomic 22 a cikin jadawalin sinadarai. Yana cikin rukunin transition metals, wato sinadaran ƙarfe waɗanda ke da electron a cikin tsarin 3d shell, kuma yana da siffofi na musamman da ke bambanta shi da sauran sinadaran ƙarfe na irin wannan rukuni.

    Titanium yana da launin ruwan toka mai walƙiya, wanda hakan ta sa ya zama sanannen ƙarfe a fannoni da dama, musamman inda ake buƙatar ƙarfi sosai da ƙarancin nauyi. Titanium yana da ƙarfi matuƙa gaya idan aka kwatanta da ƙarafa irinsu aluminum, kuma yana da juriya ga lalacewa, tsatsa, da sinadarai masu kaifi, saboda yana samar da oxide layer (TiO₂) a samansa wanda ke kare shi daga oxidation da corrosion.

    img 20251014 wa00402
    Hoton sinadarin titanium.

    Nauyin titanium yana da sauƙi idan aka kwatanta da ƙarafa irinsu steel, wanda ke sa alloys ɗinsa su zama masu amfani sosai a masana’antar jiragen sama, aerospace, da kayayyakin aikin likitanci. A cikin waɗannan fannonin, ƙarancin nauyi da ƙarfi sosai yana taimakawa wajen rage amfani da makamashi da kuma tabbatar da daɗewar kayayyakin aiki.

    Duk da cewa yana da ƙarfin sosai da juriyar tsatsa, titanium yana da ɗan ƙarancin damar haɗuwa da ruwa a yanayin dabi’a (natural), wato ba ya yin reaction mai ƙarfi da ruwa kamar calcium ko sodium. Wannan siffofi ne suka sa titanium ya dace wajen ƙirƙirar kayayyakin aikin likitanci, kamar implants, ƙwayoyin hakora, da kayan aikin tiyata, domin ba ya haifar da guba ko lalacewar jiki.

    Haka kuma, titanium yana da ƙarancin toxicity (cutarwa) ga ɗan Adam, wanda ke bambanta shi da wasu sinadaran metals masu haɗari kamar beryllium ko chromium mai hexavalent. Hakan ya sa amfani da titanium a fannin kimiyya da fasahar lafiya ya zama cikin kwanciyar hankali, musamman a implants mai daukar tsawon lokaci da kayan aikin da ke cuɗanya da jiki kai tsaye.

    Tarihin gano sinadarin

    Titanium an fara gano shi a shekarar 1791 ta hannun masanin kimiyya ɗan ƙasar Biritaniya, William Gregor, yayin da yake nazarin wasu ma’adanan a Cornwall, Ingila. Ya lura da wani sinadari mai ƙarfin gaske a cikin ma’adanan da ake kira ilmenite (FeTiO₃). Wannan ganowa ta nuna wani sabon sinadarin ƙarfe da bai yi fice a kimiyyar wancan lokaci ba.

    A shekarar 1795, masanin kimiyya ɗan ƙasar Faransa, Martin Heinrich Klaproth, ya yi nazari kan wannan ma’adani kuma ya tabbatar da kasancewarsa sinadari. Klaproth ya ba shi sunan Titanium, daga sunan allolin Girka, Titans, saboda ƙarfinsa da juriyarsa.

    Sai dai, ba a iya ware titanium a tsantsarsa a wancan lokacin ba saboda oxidation da juriya ga zafi da lalacewa. Hakan ya hana masana’antu amfani da shi wajen ƙera kayayyakin aiki kai tsaye. Har zuwa shekarar 1910, masana kimiyya sun fara amfani da fasahohin reduction na sinadari kamar Kroll Process da Hunter Process don samar da titanium zalla. Wannan ya buɗe ƙofa ga masana’antu don amfani da titanium sosai, musamman a masana’antar aerospace, likitanci, da chemical industries.

    Ganowa da sarrafa titanium ya kasance muhimmin cigaba a fannin kimiyyar sinadarai da masana’antu, domin ya bayyana matsayin sinadaran da ke rukunin transition metals da cewa, ba kawai ƙarfe mai nauyi ba ne, ƙarfe ne mai ƙarfin matuƙa da ƙarancin nauyi, wanda zai iya jure yanayi mai tsanani da corrosion.

    Siffofin Sinadarai

    Titanium sinadari ne mai lambar  atomic 22, kuma atomic mass ɗinsa yana kaiwa 47.867 u. Electron configuration ɗinsa shi ne [Ar] 3d² 4s², wanda ke tabbatar da kasancewarsa cikin rukunin transition metals, wato ƙarfe mai iya sauya oxidation states da yin haɗuwa da sauran sinadarai.

    Oxidation states na titanium sun haɗa da +2, +3, da +4, inda +4 shi ne mafi karko da yawa a cikin yanayi. Hakan ya ba shi damar yin alloys masu juriya sosai da corrosion, musamman a yanayi mai tsanani kamar ruwa mai gishiri, acid, da zafi mai yawa.

    Melting point ɗinsa yana kaiwa 1668 °C, yayin da boiling point ɗinsa yake 3287 °C, wanda hakan ke nuna ƙarfinsa wajen jure yanayi mai tsanani. Density ɗinsa shi ne 4.506 g/cm³, hakan na nuna cewa ƙarfe ne mai ƙarancin nauyi idan aka kwatanta da sinadaran ƙarfe na asali irinsu iron, wanda hakan ta sa ya zama sanannen ƙarfe a masana’antar aerospace da likitanci.

    20251014 233804
    Takaitaccen bayanin sinadarin titanium.

    Titanium yana samar da wani oxide layer (TiO₂) a samansa wanda ke kare shi daga corrosion da tsatsa. Wannan layer ɗin ta oxide ba kawai tana hana lalacewa ba ne, har ila yau tana ba da damar amfani da titanium a masana’antar kimiyya da fasaha, kayayyakin aikin likitanci.

    Haɗuwar titanium da wasu sinadarai

    Titanium yana da matuƙar juriya ga lalacewa saboda oxide layer (TiO₂) da ke samansa. Wannan layer tana kare titanium daga ruwa, iskar oxygen, da yawancin acids masu rauni. Duk da haka, yana iya yin haɗuwa da wasu sinadarai masu ƙarfi a yanayi mai zafi:

    • Oxygen (O₂): Titanium yana samar da titanium dioxide (TiO₂) tatacce, wanda shi ne oxide da ke kare ƙarfen daga lalacewa.
    • Chlorine (Cl₂) da halogens: Yana iya samar da titanium tetrachloride (TiCl₄), wanda yake amfani a masana’antar saka pigments da kuma samar da titanium metal ta hanyar reduction.
    • Acids masu ƙarfi: A yanayi mai tsanani, titanium na iya haɗuwa da acids kamar sulfuric acid (H₂SO₄) ko hydrochloric acid (HCl), musamman idan oxide layer ɗin ta lalace.

    Titanium ba ya yin oxidation da ruwa a yanayi na yau da kullum, wanda ke nuni da ƙarancin reactivity ɗinsa idan aka kwatanta da sauran transition metals kamar iron da aluminum. Wannan siffofin na jurewa da tabbatuwa sun sa ya zama babban zaɓi a masana’antar aerospace, likitanci, da masana’antar lantarki.

    Rabe-raben isotopes

    Titanium yana da isotopes da dama, waɗanda suka haɗa da ⁴⁶Ti, ⁴⁷Ti, ⁴⁸Ti, ⁴⁹Ti, da ⁵⁰Ti. Daga cikinsu, ⁴⁸Ti shi ne mafi yawa a doron ƙasa, kusan kashi 73.7% na duk titanium da ke samuwa a natural form. Waɗannan isotopes masu dawwama ne kuma ana amfani da su a binciken alloy properties da kuma ayyukan nukiliya. Waɗannan isotopes na titanium duk stable ne, wato ba sa lalacewa ta hanyar rediyoaktif. Ana amfani da su sosai a fannonin bincike da masana’antu:

    • Titanium (⁴⁶Ti): Ana amfani da shi wajen nazarin alloys da siffofinsu a ƙarƙashin yanayi mai zafi da tsanani, musamman a masana’antar aerospace da masana’antar lantarki.
    • Titanium (⁴⁷Ti): Wannan isotope yana taimakawa wajen nazarin tsarin kristal da kuma tantance yadda titanium ke haɗuwa da sauran sinadarai a cikin alloys.
    • Titanium (⁴⁸Ti): Mafi yawa a doron ƙasa, yana da amfani sosai wajen samar da alloys masu ƙarfin gaske da kuma a fannin likitanci, musamman a implants na titanium.
    • Titanium (⁴⁹Ti): Ana amfani da shi a binciken nuclear physics, domin yana da muhimmanci wajen fahimtar neutron capture da kuma reactions a cikin reactors.
    • Titanium (⁵⁰Ti): Wannan isotope yana taimakawa wajen nazarin sifofin alloy da kuma samar da titanium tatacce ta hanyar isotopic separation a masana’antu da bincike.

    Isotopes na titanium suna taimakawa wajen nazarin material science, musamman wajen fahimtar yadda alloys ke jure lalacewa da ƙarfin gaske a yanayi mai tsanani. Haka kuma suna taka rawa a fannin nuclear physics domin ana amfani da su a cikin reactors da wasu gwaje-gwajen bincike.

    Samuwar titanium a cikin yanayi

    Titanium ba ya fitowa a matsayin ƙarfe tsantsa a doron ƙasa saboda ƙarfin haɗuwarsa da oxygen da sauran sinadarai. Yana samuwa ne kawai a cikin ma’adanan dutse da yanayi daban-daban:

    • Ma’adanan dutse: Ana samun titanium sosai a cikin ilmenite (FeTiO₃), wanda shi ne tushen titanium mafi yawa a duniya, da kuma rutile (TiO₂) da anatase (TiO₂). Waɗannan ma’adanan suna da amfani sosai wajen samar da titanium tsantsa ta hanyar reduction.
    • Ruwan teku: Titanium yana samuwa a cikin ruwan teku a matsayin ions (Ti⁴⁺), amma a ƙaramin adadi, wanda hakan ke nuna ƙarancin samuwarsa a ruwa.
    • Yanayin volcanic: A wasu duwatsu masu asali daga volcanic, titanium yana wanzuwa a matsayin oxide, musamman TiO₂, wanda ke haɗe da sauran minerals.

    Ƙasashe masu samar da titanium

    Yawancin samar da titanium a doron ƙasa yana da yawa a wasu ƙasashe saboda ma’adanan da suke da yawa da kuma hanyoyin fasaha:

    • Australia: Tana da yalwar ma’adanan rutile da ilmenite, ita ce babbar mai fitar da titanium a duniya.
    • South Africa: Tana da ma’adanan ilmenite da rutile masu yawa.
    • Canada: Tana da ma’adanan samar da titanium da ake amfani da su wajen alloys da pigments.
    • Norway: Tana sa tushen samuwar titanium a rutile da ilmenite, ana amfani da su a masana’antu.
    • China: Babbar mai samar da titanium a masana’antu da alloys.
    • India: Tana samar da ma’adanan ilmenite da rutile don amfani a  masana’antu da pigments.

    Sauran hanyoyin samar da titanium

    Titanium yana da wahalar samuwa a doron ƙasa a matsayin ƙarfe tsantsa saboda ƙarfin haɗuwar sa da oxygen. Dalilin haka, masana’antu sun kirkiro hanyoyi na musamman don ware shi daga ma’adanan dutse da oxide dinsa. Babban hanyoyin sun haɗa da:

    Kroll process

    Wannan shi ne babban tsarin masana’antu da ake amfani da shi wajen samar da titanium zalla. Matakansa sun haɗa da:

    • Chlorination: Ana mayar da titanium dioxide (TiO₂) daga ma’adanai kamar rutile ko anatase zuwa titanium tetrachloride (TiCl₄) ta hanyar haɗuwa da chlorine da carbon. Wannan mataki yana raba titanium daga sauran abubuwa masu haɗari.
    • Reduction: A wannan matakin, sai a rage TiCl₄ da magnesium a cikin yanayi mai tsafta don samun titanium zalla. Wannan mataki yana samar da ƙarfe mai tsafta sosai wanda za a iya amfani da shi a masana’antu.

    Hunter process

    Wannan hanya ce ta samar da titanium a ƙaramin adadi ko masana’antu na musamman:

    • Ana amfani da sodium maimakon magnesium don rage titanium tetrachloride (TiCl₄).
    • Ana amfani da wannan hanya ne a lokacin da ba a buƙatar yawa sosai ko don samar da titanium a ƙaramin adadi.

    Matakan tsaro da kula

    Duk waɗannan hanyoyin suna buƙatar tsauraran matakan tsaro saboda:

    • Chlorine yana da guba da haɗari ga numfashi.
    • Magnesium da sodium suna da saurin kamawa da wuta idan suka haɗu da ruwa ko iska.

    Amfanin sinadarin titanium

    • Masana’antar jiragen sama da aerospace

    Titanium yana da ƙarfi sosai da ƙarancin nauyi, wanda hakan ya sa ya dace da amfani a sassa na jiragen sama, fuskar jirgi, satellites, da kayan aikin aerospace. Alloys na titanium suna ba da damar ƙirƙirar sassa masu nagarta, juriya ga tsanani da zafi, kuma suna rage nauyi idan aka kwatanta da ƙarafa irinsu stainless steel. Wannan ya sa jiragen sama suka fi ƙarfi wajen ɗaukar nauyi da inganci a aiki.

    • Kayayyakin likitanci

    Titanium alloys suna da ƙarancin guba da juriya ga lalacewa, wanda hakan ya sa suka dace da ƙirƙirar implants na ƙashi, hakora, da joints. Ba sa haifar da mummunan yanayi ga jiki, wanda hakan ke rage haɗarin rashin jituwa ko inflammation. Ana amfani da su wajen ƙirƙirar stents, screws, da plates don gyaran ƙashi.

    Masana’antar fenti da lantarki

    Titanium dioxide (TiO₂) ana amfani da shi sosai a matsayin pigments a wajen haɗa fenti da coatings saboda ƙarfin jurewa haske, tsatsa, da lalacewa. Haka kuma, ana amfani da titanium a kayan lantarki saboda juriya ga zafi da tsanani, wanda hakan ya sa ya dace da insulators, capacitors, da wasu sassa na semiconductor.

    • Fasahar nukiliya

    Titanium yana da amfani a reactors da wasu sassa masu juriya ga radiation saboda oxide layer da ke kare shi daga lalacewa. Ana amfani da shi wajen ƙera alloys da ke buƙatar daɗewa da juriya ga zafi da neutron exposure a yanayi na nukiliya.

    Illolin titanium

    Akwai haɗari idan ana aiki da hoda mai ƙananan ƙwayoyin titanium (titanium powder) saboda yana iya haifar da fashewa a cikin iska idan aka samu iskar oxygen mai yawa da zafi. Haka kuma, hodar na iya haifar da rikicewar huhu idan aka shaƙa ba tare da kariya ba.

    A masana’antu, ana amfani da matakan tsaro kamar respirators, riguna masu kariya, da tsarin ventilating mai kyau domin hana haɗarin fashewa da shakar hoda.

    Manazarta

    Colvin, T. (2019). Titanium: Properties, Production, and Applications. Springer.

    Gupta, C. K., & Krishnamurthy, N. (2005). Extractive Metallurgy of Titanium. CRC Press.

    Leyens, C., & Peters, M. (2003). Titanium and Titanium Alloys: Fundamentals and Applications. Wiley-VCH.

    Zhang, L., & Wang, Y. (2021). Titanium in Aerospace Applications. Materials Science and Engineering, 128(6), 1–22.

    NASA. (2020, March 15). Titanium in Spacecraft Engineering. NASA Materials Science.

    Leyens, C., & Peters, M. (2019). Titanium and titanium alloys: Fundamentals and applications. Wiley-VCH.

    Murray, J. L. (2018). The chemical properties and industrial uses of titanium. Industrial & Engineering Chemistry Research, 57(12), 4005–4015.

    Tarihin Wallafa Maƙalar

    An kuma sabunta ta 16 October, 2025

    Sharuɗɗan Editoci

    Duk maƙalun da kuka karanta a wannan taska ta Bakandamiya, marubuta da editocinmu ne suka rubuta. Kuma kowace maƙala da aka buga ta bi muhimman matakai na tantancewa don ganin cewa bayanan dake cikinta sun inganta.

    Idan kuma an ga wani kuskure a cikin kowace maƙalarmu, a sanar da mu. Za mu yi bincike sannan mu gyara gwargwadon fahimtarmu.

    Maƙalar ta amfanar?
    EAa

    You cannot copy content of this page

    ×